import torch import numpy as np data = [[1,2],[3,4]] x_data = torch.tensor(data) print(x_data) np_array = np.array(data) x_np = torch.from_numpy(np_array) x_ones = torch.ones_like(x_data) print(f"Ones Tensor: \n {x_ones}\n") print(x_ones.dtype) x_rand = torch.rand_like(x_data, dtype=torch.float) print(f"Random Tensor: \n {x_rand} \n") print(x_rand.dtype) shape=(2, 3) rand_tensor = torch.rand(shape) ones_tensor = torch.ones(shape) zeros_tensor = torch.zeros(shape) print(f"Random Tensor: \n {rand_tensor} \n") print(f"Ones Tensor: \n {ones_tensor} \n") print(f"Zeros Tensor: \n {zeros_tensor} \n") tensor = torch.rand(3, 4) print(f"Shape of tensor: {tensor.shape}") print(f"Datatype of tensor: {tensor.dtype}") print(f"Device tensor is stored on: {tensor.device}") tensor = torch.ones(4, 4) if torch.cuda.is_available(): tensor = tensor.to("cuda") print(f"First row: {tensor[0]}") print(f"First column: {tensor[:, 0]}") print(f"Last Column: {tensor[..., -1]}") tensor[:, 1] = 0 print(tensor) t1 = torch.cat([tensor, tensor, tensor], dim=1) print(t1) y1 = tensor @ tensor.T y2 = tensor.matmul(tensor.T) print(y1) print(y2) y3 = torch.rand_like(y1) torch.matmul(tensor, tensor.T, out=y3) print(y3) print(y3.cpu().numpy()) agg = y3.sum() print(agg) print(agg.item())